解读:现代超精密加工技术的发展现状
随着1960年代初期航空航天技术的发展,超精密加工技术首先在美国提出,并在政府和军方的财政支持下迅速发展。1970年代,日本还成立了超精密加工技术委员会,并制定了相应的发展计划,以将该技术纳入高科技产业。经过多年的发展,日本在民用光学,电子和信息产品行业中一直处于世界领先地位。
超精密加工
近年来,美国实施了“微米和纳米级技术”国家关键技术计划,国防部也已实施。成立了专门委员会来协调和协调研究工作。美国目前至少有30多家公司开发和生产各种类型的超精密加工机床。Lawrence-Livermore国家实验室(LLNL),MooreqMoore等在国际超精密加工技术领域早已众所周知。使用这些超精密加T设备对不同形状和类型的零件的陶瓷,硬质合金,玻璃和塑料材料进行超精密加工,用于航空,航天,半导体,能源,医疗设备和其他行业。
日本有20多家超精密加工机床开发公司,专注于民用产品所需的超精密加工设备的开发,并大量生产了各种商用超精密加工机床:日本的照相机,电视,复印机,投影仪民用光学行业的飞速发展与其先进的超精密Gadine技术有着直接的关系。自1960年代以来,英国一直在研究超精密加工技术。现在,它已经建立了国家纳米技术战略委员会,并正在执行国家纳米技术研究计划。德国和瑞士也以生产精密加T设备而闻名。1992年后,欧洲实施了一系列联合研发计划。加强和促进精密超精密加工技术的发展
超精密加工是指亚微米级(尺寸误差为0.3~0.03μm,表面粗糙度为Ra0.03~0.005μm)和纳米级(精度误差为0.03μm,表面粗糙度小于Ra0.005μm)精度的加工。实现这些加工所采取的工艺方法和技术措施,则称为超精加工技术。加之测量技术、环境保障和材料等问题,人们把这种技术总称为超精工程。超精密加工主要包括三个领域:超精密切削加工如金刚石刀具的超精密切削,可加工各种镜面。它已成功地解决了用于激光核聚变系统和天体望远镜的大型抛物面镜的加工。超精密磨削和研磨加工如高密度硬磁盘的涂层表面加工和大规模集成电路基片的加工。超精密特种加工如大规模集成电路芯片上的图形是用电子束、离子束刻蚀的方法加工,线宽可达0.1μm。如用扫描隧道电子显微镜(STM)加工,线宽可达2~5nm。
a、超精密切削
超精密切削以SPDT技术开始,该技术以空气轴承主轴、气动滑板、高刚性、高精度工具、反馈控制和环境温度控制为支撑,可获得纳米级表面粗糙度。多采用金刚石刀具铣削,广泛用于铜的平面和非球面光学元件、有机玻璃、塑料制品(如照相机的塑料镜片、隐形眼镜镜片等)、陶瓷及复合材料的加工等。未来的发展趋势是利用镀膜技术来改善金刚石刀具在加工硬化钢材时的磨耗。此外,MEMS组件等微小零件的加工需要微小刀具,目前微小刀具的尺寸约可达50~100μm,但如果加工几何特征在亚微米甚至纳米级,刀具直径必须再缩小,其发展趋势是利用纳米材料如纳米碳管来制作超小刀径的车刀或铣刀。
b、超精密磨削
超精密磨削是在一般精密磨削基础上发展起来的一种镜面磨削方法,其关键技术是金刚石砂轮的修整,使磨粒具有微刃性和等高性。超精密磨削的加工对象主要是脆硬的金属材料、半导体材料、陶瓷、玻璃等。磨削后,被加工表面留下大量极微细的磨削痕迹,残留高度极小,加上微刃的滑挤、摩擦、抛光作用,可获得高精度和低表面粗糙度的加工表面,当前超精密磨削能加工出圆度0.01μm、尺寸精度0.1μm和表面粗糙度为Ra0.005μm的圆柱形零件。
c、超精密研磨
超精密研磨包括机械研磨、化学机械研磨、浮动研磨、弹性发射加工以及磁力研磨等加工方法。超精密研磨的关键条件是几乎无振动的研磨运动、精密的温度控制、洁净的环境以及细小而均匀的研磨剂。超精密研磨加工出的球面度达0.025μm,表面粗糙度Ra达0.003μm。
d、超精密特种加工
超精密特种加工主要包括激光束加工、电子束加工、离子束加工、微细电火花加工、精细电解加工及电解研磨、超声电解加工、超声电解研磨、超声电火花等复合加工。激光、电子束加工可实现打孔、精密切割、成形切割、刻蚀、光刻曝光、加工激光防伪标志;离子束加工可实现原子、分子级的切削加工;利用微细放电加工可以实现极微细的金属材料的去除,可加工微细轴、孔、窄缝平面及曲面;精细电解加工可实现纳米级精度,且表面不会产生加工应力,常用于镜面抛光、镜面减薄以及一些需要无应力加工的场合。
超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。美国50年代未发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(SinglePointDia-mondTurning)或“微英寸技术”(1微英寸=0.025μm),并发展了相应的空气轴承主轴的超精密机床,用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件等。英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工件的形状精度可达0.1μm,表面粗糙度Ra<10nm。日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。
南京9游服务精密科技有限公司是国内进行超精密加工技术研究的主要单位之一,研制出了多种不同类型的超精密机床、部件和相关的高精度测试仪器等,如精度达0.025μm的精密轴承、JCS—027超精密车床、JCS—031超精密铣床、JCS—035超精密车床、超精密车床数控系统、复印机感光鼓加工机床、红外大功率激光反射镜、超精密振动-位移测微仪等,达到了国内领先、国际先进水平。哈尔滨工业大学在金刚石超精密切削、金刚石刀具晶体定向和刃磨、金刚石微粉砂轮电解在线修整技术等方面进行了卓有成效的研究。清华大学在集成电路超精密加工设备、磁盘加工及检测设备、微位移工作台、超精密砂带磨削和研抛、金刚石微粉砂轮超精密磨削、非圆截面超精密切削等方面进行了深入研究,并有相应产品问世。我国超精密加工技术与美日相比,还有不小差距,特别是在大型光学和非金属材料的超精加工方面,在超精加工的效率和自动化技术方面差距尤为明显。
超精密加工将向高精度、高效率、大型化、微型化、智能化、工艺整合化、在线加工检测一体化、绿色化等方向发展。
a、高精度、高效率
随着科学技术的不断进步,对精度、效率、质量的要求愈来愈高,高精度与高效率成为超精密加工永恒的主题。超精密切削、磨削技术能有效提高加工效率,CMP、EEM技术能够保证加工精度,而半固着磨粒加工方法及电解磁力研磨、磁流变磨料流加工等复合加工方法由于能兼顾效率与精度的加工方法,成为超精密加工的趋势。
b、大型化、微型化
由于航天航空等技术的发展,大型光电子器件要求大型超精密加工设备,如美国研制的加工直径为2.4~4m的大型光学器件超精密加工机床。同时随着微型机械电子、光电信息等领域的发展,超精密加工技术向微型化发展,如微型传感器,微型驱动元件和动力装置、微型航空航天器件等都需要微型超精密加工设备。
c、智能化
以智能化设备降低加工结果对人工经验的依赖性一直是制造领域追求的目标。加工设备的智能化程度直接关系到加工的稳定性与加工效率,这一点在超精密加工中体现更为明显。
d、工艺整合化
当今企业间的竞争趋于白热化,高生产效率越来越成为企业赖以生存的条件。在这样的背景下,出现了“以磨代研”甚至“以磨代抛”的呼声。另一方面,使用一台设备完成多种加工(如车削、钻削、铣削、磨削、光整)的趋势越来越明显。
e、在线加工检测一体化
由于超精密加工的精度很高,必须发展在线加工检测一体化技术才能保证产品质量和提高生产率。同时由于加工设备本身的精度有时很难满足要求,采用在线检测、工况监控和误差补偿的方法可以提高精度,保证加工质量的要求。
f、绿色化
磨料加工是超精密加工的主要手段,磨料本身的制造、磨料在加工中的消耗、加工中造成的能源及材料的消耗、以及加工中大量使用的加工液等对环境造成了极大的负担。我国是磨料、磨具产量及消耗的第一大国,大幅提高磨削加工的绿色化程度已成为当务之急发达国家以及我国的台湾地区均对半导体生产厂家的废液、废气排量及标准实施严格管制,为此,各国研究人员对CMP加工产生的废液、废气回收处理展开了研究。绿色化的超精密加工技术在降低环境负担的同时,提高了自身的生命力。
面向21世纪的精密加工技术的发展趋势体现在以下几个方面:
a、精密化
精密加工的核心主要体现在对尺寸精度、仿形精度、表面质量的要求。当前精密电火花加工的精度已有全面提高,尺寸加工要求可达±2-3μm、底面拐角R值可小于0.03mm,最佳加工表面粗糙度可低于Ra0.3μm。通过采用一系列先进加工技术和工艺方法,可达到镜面加工效果且能够成功地完成微型接插件、IC塑封、手机、CD盒等高精密模具部位的电火花加工。
b、智能化
智能化是而向21世纪制造技术的发展趋势之一。智能制造技术(IMT)是将人工智能融入制造过程的各个环节,通过模拟人类专家的智能活动,取代或延伸制造系统中的部分脑力劳动,在制造过程中系统能自动监测其运行状态,在受到外界干扰或内部激励能自动调整其参数,以达到最佳状态和具备自组织能力。新型数控电火花机床采用了模糊控制技术和专家系统智能控制技术。模糊控制技术是由计算机监测来判定电火花加工间隙的状态,在保持稳定电弧的范围内自动选择使加工效率达到最高的加工条件;自动监控加工过程,实现最稳定的加工过程的控制技术。采用人机对话方式的专家系统,根据加工的条件、要求,合理输入设定值后便能自动创建加工程序,选用最佳加工条件组合来进行加工。在线自动监测、调整加工过程,实现加工过程的最优化控制。专家系统在检测加工条件时,只要输入加工形状、电极与工件材质、加工位置、目标粗糙度值、电极缩放量、摇动方式、锥度值等指标,就可自动推算并配置最佳加工条件。专家系统智能技术的应用使机床操作更容易,对操作人员的技术水平要求更低。
c、自动化
自动化技术的成功应用,不但提高了效率,保证了产品质量,还可以代替人去完成危险场合的工作。对于批量较大的生产自动化,可通过机床自动化改装、应用自动机床、专用组合机床、自动生产线来完成。小批量生产自动化可通过NC,MC,CAM,FMS,CIM,IMS等来完成。在末来的自动化技术实施过程中,将更加重视人在自动化系统中的作用。同时自动化开始面向中小型企业,以经济实用为出发点,满足不断发展的产品多样化和个性化需要。数控电火花机床具备的自动测量找正、自动定位、多工件的连续加工等功能已较好地发挥了它的自动化性能。自动操作过程不需人工干预,可以提高加工精度、效率。目前最先进的数控电火花机床在配有电极库和标准电极夹具的情况下,只要在加工前将电极装入刀库,编制好加工程序,整个电火花加工过程便能日以赴继地自动运转,几乎无需人工操作。机床的自动化运转降低了操作人员的劳动强度、提高生产效率。
d、高效化
现代加工的要求为数控电火花加工技术提供了最佳的加工模式,即要求在保证加工精度的前提下大幅提高粗、精加工效率。如手机外壳、家电制品、电器用品、电子仪表等领域,都要求减少辅助时间(如编程时间、电极与工件定位时间等),同时又要降低粗糙度,从原来的Ra0.8μm改进到Ra0.25μm,使放电后不必再进行手工抛光处理。这不但缩短了加工时间且省却后处理的麻烦,同时提升了模具品质,使用粉末加工设备可达到要求。这就需要增强机床的自动编程功能,配置电极与工件定位的夹具、装置。若在大工件的粗加工中选用石墨电极材料也是提高加工效率的好方法。
e、信息化
信息、物质和能源是制造系统的三要素。随着计算机、自动化与通讯网络技术红制造系统中的应用,信息的作用越来越重要。产品制造过程中的信息投入,己成为决定产品成本的主要因素。制造过程的实质是对制造过程中各种信息资源的采集、输入、加工和处理过程,最终形成的产品可看作是信息的物质表现,因此可以把信息看作是一种产业,包括在制造之中。为此一些企业开始利用网络技术、计算机联网、信息高速公路、卫星传递数据等实现异地生产。使生产分散网络化,以适应21世纪高柔性生产的需要。
f、柔性化
随着科学技术的飞速发展和人民生活水平不断提高,促使产品更新换代的速度不断加快,这就要求现代企业必须具备一定的生产柔性来满足市场多变的需要。所谓柔性,是指一个制造系统适应各种生产条件变化的能力,它与系统方案、人员和设备有关。系统方案的柔性是指加工不同零件的自由度。人员柔性是指操作人员能保证加工任务,完成数量和时间要求的适应能力。设备柔性是指机床能在短期内适应新零件的加工能力。柔性制造自动化的形式很多,如美国提出的敏捷制造(AM)其主线就是高柔性生产。上海同济大学张曙教授提出的独立制造岛(AMI)也是高柔性生产模式。
g、集成化
集成的作用是将原来独立运行的多个单元系统集成一个能协调工作的和功能更强的新系统。集成不是简单的连接,是经过统一规划设计,分析原单元系统的作用和相互关系并进行优化重组而实现的。集成化的目的是实现制造企业的功能集成,功能集成要借助现代管理技术、计算机技术、自动化技术和信息技术实现技术集成,同时还要强调人的集成,由于系统中不可能没有人,系统运行的效果与企业经营思想、运行机制、管理模式都与人有关,在技术上集成的同时,还应强调管理与人的集成。集成化生产将成为面向21世纪占主导的生产方式。
精密和超精密加工发展策略
精密和超精密加工经过数十年的努力,日趋成熟,不论是超精密机床、金刚石工具,还是超精密加工工艺已形成了一整套完整的超精密制造技术系统,为推动机械制造向更高层次发展奠定了基础,现在正在向纳米级精度或毫微米精度迈进,其前景十分令人鼓舞。随着科学技术的飞速发展和市场竞争日益激烈,越来越多的制造业开始将大量的人力、财力和物力投入先进的制造技术和先进的制造模式的研究和实施策略之中。
1、整合、创新思想的运用
精密、超精密加工技术是发展科技的重要手段,所以受到世界各国的广泛重视,因此也就不断地获得新的成果,但是因为它的要求都处在精度的极限,传统的、单一的技术往往很难突破,必须综合地运用信息化技术,通过综合、分析,加以整合、重组,进一步满足更高的要求。
精密加工技术是一项系统工程,它集机床、工具、计量、数控、材料、环境控制等成果于一体,针对不同的加工对象,不同的设计要求,综合地加以利用。超精密加工技术也都是在其有关的各项技术支撑的条件下,逐步发展起来的,同时又往往取各项技术的崭新成果来加以充实、提高。超精密加工技术每前进一步,都离不开创新,这是由超精密加工技术所处的位置决定的,因为这门技术始终处在发展的前沿。面对飞速发展的需求就决定了它必须创新。
2、先进的制造模式应用
制造模式是指企业体制、经营、管理、生产组织和技术系统的形态和运作模式。
a、敏捷制造
美国通用汽车公司与里海大学于1988年提出了敏捷制造(AM),AM是在不可预测的持续变化的竞争环境中取得繁荣成长,并具有能对客户需求的产品和服务驱动市场作出迅速响应的生产模式。AM的特征是:
①企业间联作集成。充分发挥各企业的长处,针对限定市场的目标要求共同合作完成任务。
②具有高度的制造柔性。制造柔性是指制造企业对市场要求迅速转产和能实现产品多品种变批量的快速制造。
③充分发挥人的作用,不断提高企业职工素质和教育水平,优化人机功能分配。
b、虚拟制造
虚拟制造(VM)是国际上提出的新概念。VM与AM联系密切。VM的特征是:当市场新的机遇出现时,组织几个有关公司联作,把不同的公司,不同地点的工厂或车间重新组织协调工作。在运行之前必须分析组合是否最优,能否协调运行,以及投产后的效益和风险进行评估,这种联作公司称虚拟公司。虚拟公司通过虚拟制造系统运行。因此研究开发虚拟制造技术(VMT)和虚拟制造系统(VMS)意义重大,美国称AM为2l世纪制造业发展战略。
c、集成制造
美国哈林顿博士在《计算机和集成制造》一书中提出计算机和集成制造(CIM)的概念。集成制造的核心内容是:制造企业从市场预测、产品设计、加工制造、经营管理克至售后服务是一个不可分割的整体,需要统筹考虑。整个制造过程的实质是信息采集、传递和加工过程,最终生产的产品可看作是信息的物质表现。集成是CIM的核心,这种集成不仅是物的集成,更主要的是以信息集成为特征的技术集成和功能集成,计算机是集成的工具,计算机和辅助各单元技术是集成的基础,信息交换是桥梁,信息共享是关键。集成的目的在于制造企业组织结构和运行方式的合理化和最优化,以提高今业对市场变化的动态响应速度,并追求最高整体效益和长期效益。
d、智能制造
智能制造(IM)是美国出版研究IM和IMS书籍中首先提出的。它的特征是:在制造工业的各个环节的高度柔性与高度集成的方式,通过计算机和模拟人类专家的智能活动,进行分析、判断、推理、构思和决策,旨在取代或延伸制造环境中人的部分脑力劳动,并对人类专家的制造智能进行收集、存储、完善、共享、继承与发展。制造智能的目的是:通过集成知识工程、制造软件系统、机器人视觉和机器人控制对制造工人的技能与人类专家知识进行建模,以使智能机器能够在没有人干预的情况下进行小批量生产。
e、绿色制造
绿色制造又称环境意识制造和面向环境的制造等。即综合考虑环境影响和资源消耗的现代制造模式。其目标是使得产品从设计、制造、包装、运输、使用到报废处理的全生命周期中,废弃物和有害排放物最小,对环境的负面影响最小,对健康无害,资源利用率最高,使企业经济效益和社会效益更高。
结束语
精密和超精密加工,是现代机械制造业最主要的发展方向之一,在提高机电产品的性能、质量和发展高新技术中起着至关重要的作用,并且已成为在国际竞争中取得成功的关键技术。我国的制造业发展已进入了高速发展阶段,中国民营企业已具备足够的经济实力来使企业迈向现代化,先进设备的引进和大量专业人才的涌入使许多沿海地区的制造业水平迅速提高。随着国家决策的科学化、民主化进程不断深入,相信我国的制造业会更快速、更健康地发展。
关键词:南京9游服务精密科技有限公司,主营:南京精密加工公司,南京CNC加工,南京医疗器械精密零件,南京机器人精密零件,南京无人机精密零件,南京汽车精密零件,南京医疗设备精密零件,南京光学精密零件,等等chuanchuanjiqi.cn
解读:现代超精密加工技术的发展现状
05-17-2020